Update 2021.02.22
Sample Statements and Use of “df” and “dfs” variables
1. You must use “df” and “dfs” as variables for data-frames
a. As variable for the dataframes with the Python statements in pandas II and III plugins, it is required to use "df" and "dfs" to represent dataframes (all in small cases).
b. As for pandas III, the multiple dataframes ("dfs“) will take [n] as index (it is zero based as the first set of dataframe becomes dfs[0]) as shown in examples below.
2. For pandas II Statements
a. The “In file” will be the data frame stored at "df" Python variable
b. All pandas functionality is working with "df" data frame including Reshaping at statements File
c. Processed results of statement’s execution will continue to be stored in the same "df“ variable and eventually be the “Out file”
3. pandas II Statements Example
- df['BMI'] = df['Kilograms'] / ((df ['Centimeters'] / 100.0)*(df ['Centimeters'] / 100.0))
- df = df.sort_values('BMI', ascending=False)
- df = df.sort_values('BMI', ascending=False).groupby('Gender').head(5)
4. pandas III Statements
a. “In files” will be a data frame stored at "dfs[0]", "dfs[1]",... Python variable (zero base index)
b. All pandas functionality is working with "dfs[n]" data frames including merge
c. Processed results of statement’s execution will continue to be stored in the same "df“ variable and eventually be the “Out file”
5. pandas III Statements Example
- df = dfs[0].merge(dfs[1], on='sku', how='left')
Above Python represents the process illustrated below (just like vlookup feature in Excel)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Input, Output, Features, and Parameters.
Required Input
1. Input File: One data file (dataframe).
Supported input formats are .xlsm, .xls, xlsm, .csv, .tsv, and .json
2. Output File: One data file.
Supported input formats are .xlsm, .xls, xlsm, .csv, .tsv, and .json
Optional Input
3. Enter a Python statement, or multiple statements. Also a text file that contains a list of statements can be used as input.
4. When input file multiple sheets, you can select which sheet to be processed.
5. You can designate which row you can use as header (variable) for your processing.
6. You can specify a column to be used as the index of the dataframe.
7. You can specify which column(s) to be or not to be processed.
8. You can determine specific pandas datatypes for your column.
9. You can determine what character to use to separate your data (default is comma).
10. You can specify encoding technology of the input file (default is UTF-8).
11. You can select to either show or hide the index column in your output file.
How to set parameters
pandas-II plugin parameters are 100% compatible to pandas read_excel specifications
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html
Please refer the parameters on the right in the pandas document above.
- Sheet Name →sheet_name
- Header Row →header
- Index Col →index_cols
- Use Col →usecols
- Data Type →dtypes
Text from Image
- AD LDAP
- Adv Send Email
- Arithmetic Op
- Attach Image
- AWS Textra Rekog
- Bot Collabo
- Chatwork Notification
- Clipboard
- Convert CharSet
- Convert Image
- Create Newfile
- CSV2XLSX
- Detect CharSet
- Drag and Drop
- Email IMAP ReadMon
- Email Read Mon
- Env Check
- Env Var
- Excel Advanced
- Excel AdvII
- Excel AdvIII
- Excel Copy Paste
- Excel Formula
- Excel Macro
- Excel Newfile
- Fairy Devices mimi AI
- File Conv
- File Folder Op
- File Status
- Folder Monitor
- Folder Structure
- Google Calendar
- Google Cloud Vision API
- Google Drive
- Google Sheets
- Google Token
- Google Translate
- Google TTS
- Html Extract
- IBM Speech to Text
- IBM Visual Recognition
- JSON Select
- LINE Notify
- MongoDB
- MS Azure Text Analytics
- MS Word Extract
- NAVER OCR
- Newuser-SFDC
- PANDAS I
- pandas II
- pandas III
- PANDAS profiling
- Parsehub
- Password Generate
- PDF2Doc
- PDF Miner
- PDF SplitMerge
- PowerShell
- Print 2 Image
- Python Selenium
- QR Generate
- QR Read
- Regression
- REST API
- Rossum
- Scrapy Basic
- Screen Snipping
- Simple SFDC
- Slack
- Speed Test
- SQL
- SSH Command
- SSH Copy
- String Manipulation
- Telegram
- Tesseract
- Time Stamp
- Web Extract
- Windows Op
- Work Calendar
- XML Extract
- Xtracta Get Doc
- Xtracta Tracking
- Xtracta Upload
- ZipUnzip